Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
2.
Int J Mol Sci ; 23(10)2022 May 22.
Article in English | MEDLINE | ID: covidwho-1875645

ABSTRACT

Actinidia latifolia is one of the very few kiwifruit genotypes with extremely high ascorbic acid (AsA) content. However, a transcriptome atlas of this species is lacking. The accumulation of AsA during fruit development and ripening and the associated molecular mechanisms are still poorly understood. Herein, dynamic changes in AsA content at six different stages of A. latifolia fruit development and ripening were determined. AsA content of A. latifolia fruit reached 1108.76 ± 35.26 mg 100 g-1 FW at full maturity. A high-quality, full-length (FL) transcriptome of A. latifolia was successfully constructed for the first time using third-generation sequencing technology. The transcriptome comprises 326,926 FL non-chimeric reads, 15,505 coding sequences, 2882 transcription factors, 18,797 simple sequence repeats, 3328 long noncoding RNAs, and 231 alternative splicing events. The genes involved in AsA biosynthesis and recycling pathways were identified and compared with those in different kiwifruit genotypes. The correlation between the AsA content and expression levels of key genes in AsA biosynthesis and recycling pathways was revealed. LncRNAs that participate in AsA-related gene expression regulation were also identified. Gene expression patterns in AsA biosynthesis and metabolism exhibited a trend similar to that of AsA accumulation. Overall, this study paves the way for genetic engineering to develop kiwifruits with super-high AsA content.


Subject(s)
Actinidia , Actinidia/genetics , Actinidia/metabolism , Ascorbic Acid/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Transcriptome
3.
J Food Biochem ; 46(5): e14062, 2022 05.
Article in English | MEDLINE | ID: covidwho-1627170

ABSTRACT

Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.


Subject(s)
Antiviral Agents , Moringa oleifera , Plant Extracts , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Esters/pharmacology , Fatty Acids/pharmacology , Fruit/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Moringa oleifera/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , COVID-19 Drug Treatment
4.
Chem Biodivers ; 19(1): e202100668, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1611203

ABSTRACT

Forsyqinlingines C (1) and D (2), two C9 -monoterpenoid alkaloids bearing a rare skeleton, were isolated from the ripe fruits of Forsythia suspensa. Their structures, including absolute configurations, were fully elucidated by extensive spectroscopic data and ECD experiments. The plausible biogenetic pathway for compounds 1 and 2 was also proposed. In vitro, two C9 -monoterpenoid alkaloids showed anti-inflammatory activity performed by the inhibitory effect on the release of ß-glucuronidase in rat polymorphonuclear leukocytes (PMNs), as well as antiviral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV).


Subject(s)
Alkaloids/chemistry , Anti-Inflammatory Agents/chemistry , Antiviral Agents/chemistry , Forsythia/chemistry , Monoterpenes/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Forsythia/metabolism , Fruit/chemistry , Fruit/metabolism , Glucuronidase/metabolism , Influenza A Virus, H1N1 Subtype/drug effects , Magnetic Resonance Spectroscopy , Molecular Conformation , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Platelet Activating Factor/pharmacology , Rats , Respiratory Syncytial Viruses/drug effects
5.
Phytother Res ; 35(2): 908-919, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-777655

ABSTRACT

COVID-19 pandemic is currently decimating the world's most advanced technologies and largest economies and making its way to the continent of Africa. Weak medical infrastructure and over-reliance on medical aids may eventually predict worse outcomes in Africa. To reverse this trend, Africa must re-evaluate the only area with strategic advantage; phytotherapy. One of the many plants with previous antiviral potency is against RNA viruses is Aframomum melegueta. In this study, one hundred (100) A. melegueta secondary metabolites have been mined and computational evaluated for inhibition of host furin, and SARS-COV-2 targets including 3C-like proteinase (Mpro /3CLpro ), 2'-O-ribose methyltransferase (nsp16) and surface glycoprotein/ACE2 receptor interface. Silica-gel column partitioning of A. melegueta fruit/seed resulted in 6 fractions tested against furin activity. Diarylheptanoid (Letestuianin A), phenylpropanoid (4-Cinnamoyl-3-hydroxy-spiro[furan-5,2'-(1'H)-indene]-1',2,3'(2'H,5H)-trione), flavonoids (Quercetin, Apigenin and Tectochrysin) have been identified as high-binding compounds to SARS-COV-2 targets in a polypharmacology manner. Di-ethyl-ether (IC50 = 0.03 mg/L), acetone (IC50 = 1.564 mg/L), ethyl-acetate (IC50 = 0.382 mg/L) and methanol (IC50 = 0.438 mg/L) fractions demonstrated the best inhibition in kinetic assay while DEF, ASF and MEF completely inhibited furin-recognition sequence containing Ebola virus-pre-glycoprotein. In conclusion, A. melegueta and its secondary metabolites have potential for addressing the therapeutic needs of African population during the COVID-19 pandemic.


Subject(s)
COVID-19 Drug Treatment , Furin/antagonists & inhibitors , Phytotherapy/methods , Plant Extracts/therapeutic use , SARS-CoV-2/drug effects , Zingiberaceae/chemistry , COVID-19/epidemiology , Drug Evaluation, Preclinical/methods , Fruit/chemistry , Fruit/metabolism , Furin/metabolism , Humans , In Vitro Techniques , Metabolome/physiology , Molecular Docking Simulation , Pandemics , Plant Extracts/chemistry , Plant Extracts/metabolism , Polypharmacology , SARS-CoV-2/pathogenicity , Seeds/chemistry , Seeds/metabolism , Zingiberaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL